6,469 research outputs found

    Quantum Group Covariance and the Braided Structure of Deformed Oscillators

    Full text link
    The connection between braided Hopf algebra structure and the quantum group covariance of deformed oscillators is constructed explicitly. In this context we provide deformations of the Hopf algebra of functions on SU(1,1). Quantum subgroups and their representations are also discussed.Comment: 12 pages, to be published in JM

    Simplified Vacuum Energy Expressions for Radial Backgrounds and Domain Walls

    Full text link
    We extend our previous results of simplified expressions for functional determinants for radial Schr\"odinger operators to the computation of vacuum energy, or mass corrections, for static but spatially radial backgrounds, and for domain wall configurations. Our method is based on the zeta function approach to the Gel'fand-Yaglom theorem, suitably extended to higher dimensional systems on separable manifolds. We find new expressions that are easy to implement numerically, for both zero and nonzero temperature.Comment: 30 page

    Braided Oscillators

    Full text link
    The braided Hopf algebra structure of the generalized oscillator is investigated. Using the solutions two types of braided Fibonacci oscillators are introduced. This leads to two types of braided Biedenharn-Macfarlane oscillators.Comment: 12 pages, latex, some references added, published versio

    Self-DUal SU(3) Chern-Simons Higgs Systems

    Get PDF
    We explore self-dual Chern-Simons Higgs systems with the local SU(3)SU(3) and global U(1)U(1) symmetries where the matter field lies in the adjoint representation. We show that there are three degenerate vacua of different symmetries and study the unbroken symmetry and particle spectrum in each vacuum. We classify the self-dual configurations into three types and study their properties.Comment: Columbia Preprint CU-TP-635, 19 page

    Understanding thermal alleviation in cold dwell fatigue in titanium alloys

    Get PDF
    Dwell fatigue facet nucleation has been investigated in isothermal rig disc spin tests and under anisothermal in-service engine conditions in titanium alloy IMI834 using α-HCP homogenised and faithful α-β lamellar microstructure crystal plasticity representations. The empirically observed facet nucleation and disc failure at low stress in the isothermal spin tests has been explained and originates from the material rate sensitivity giving rise to soft grain creep accumulation and hard grain basal stresses which increase with fatigue cycling until facet nucleation. The α-HCP homogenised model is not able to capture this observed behaviour at sensible applied stresses. In contrast to the isothermal spin tests, anisothermal in-service disc loading conditions generate soft grain slip accumulation predominantly in the first loading cycle after which no further load shedding nor soft grain creep accumulation is observed, such that the behaviour is stable, with no further increase in hard grain basal stress so that facet nucleation does not occur, as observed empirically. The thermal alleviation, which derives from in-service loading conditions and gives the insensitivity to dwell fatigue dependent on the temperature excursions, has been explained. A stress-temperature map for IMI834 alloy has been established to demarcate the ranges for which the propensity for dwell fatigue facet nucleation is high, threatening or low

    Functional Determinants in Quantum Field Theory

    Full text link
    Functional determinants of differential operators play a prominent role in theoretical and mathematical physics, and in particular in quantum field theory. They are, however, difficult to compute in non-trivial cases. For one dimensional problems, a classical result of Gel'fand and Yaglom dramatically simplifies the problem so that the functional determinant can be computed without computing the spectrum of eigenvalues. Here I report recent progress in extending this approach to higher dimensions (i.e., functional determinants of partial differential operators), with applications in quantum field theory.Comment: Plenary talk at QTS5 (Quantum Theory and Symmetries); 16 pp, 2 fig

    Mass Spectra of N=2 Supersymmetric SU(n) Chern-Simons-Higgs Theories

    Full text link
    An algebraic method is used to work out the mass spectra and symmetry breaking patterns of general vacuum states in N=2 supersymmetric SU(n) Chern-Simons-Higgs systems with the matter fields being in the adjoint representation. The approach provides with us a natural basis for fields, which will be useful for further studies in the self-dual solutions and quantum corrections. As the vacuum states satisfy the SU(2) algebra, it is not surprising to find that their spectra are closely related to that of angular momentum addition in quantum mechanics. The analysis can be easily generalized to other classical Lie groups.Comment: 17 pages, use revte

    Chern-Simons Solitons, Toda Theories and the Chiral Model

    Full text link
    The two-dimensional self-dual Chern--Simons equations are equivalent to the conditions for static, zero-energy solutions of the (2+1)(2+1)-dimensional gauged nonlinear Schr\"odinger equation with Chern--Simons matter-gauge dynamics. In this paper we classify all finite charge SU(N)SU(N) solutions by first transforming the self-dual Chern--Simons equations into the two-dimensional chiral model (or harmonic map) equations, and then using the Uhlenbeck--Wood classification of harmonic maps into the unitary groups. This construction also leads to a new relationship between the SU(N)SU(N) Toda and SU(N)SU(N) chiral model solutions

    Derivative expansion and large gauge invariance at finite temperature

    Get PDF
    We study the 0+1 dimensional Chern-Simons theory at finite temperature within the framework of derivative expansion. We obtain various interesting relations, solve the theory within this framework and argue that the derivative expansion is not a suitable formalism for a study of the question of large gauge invariance.Comment: 12 pages, Late

    Abelian Toda field theories on the noncommutative plane

    Full text link
    Generalizations of GL(n) abelian Toda and GL~(n)\widetilde{GL}(n) abelian affine Toda field theories to the noncommutative plane are constructed. Our proposal relies on the noncommutative extension of a zero-curvature condition satisfied by algebra-valued gauge potentials dependent on the fields. This condition can be expressed as noncommutative Leznov-Saveliev equations which make possible to define the noncommutative generalizations as systems of second order differential equations, with an infinite chain of conserved currents. The actions corresponding to these field theories are also provided. The special cases of GL(2) Liouville and GL~(2)\widetilde{GL}(2) sinh/sine-Gordon are explicitly studied. It is also shown that from the noncommutative (anti-)self-dual Yang-Mills equations in four dimensions it is possible to obtain by dimensional reduction the equations of motion of the two-dimensional models constructed. This fact supports the validity of the noncommutative version of the Ward conjecture. The relation of our proposal to previous versions of some specific Toda field theories reported in the literature is presented as well.Comment: v3 30 pages, changes in the text, new sections included and references adde
    • …
    corecore